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GFam – Automatic annotation of gene families
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This is the documentation of gfam, a Python module to aid the automatic
annotation of gene families based on consensus domain architecture, written
by Tamás Nepusz [http://hal.elte.hu/~nepusz].

GFam has no official publication yet, but there will soon be one. You are
kindly asked to cite the webpage of GFam until an official GFam publication
comes out:



GFam: a platform for automatic annotation of gene families

Tamás Nepusz, Rajkumar Sasidharan, David Swarbreck, Eva Huala and

Alberto Paccanaro. <http://github.com/ntamas/gfam>






GFam can generally be considered stable. We have used it successfully to
annotate the whole genome of Arabidopsis thaliana and Arabidopsis lyrata.
Please email the author [http://www.cs.rhul.ac.uk/home/tamas] if you discover any bugs, or feel free to
submit a bug report [http://github.com/ntamas/gfam/issues] on GitHub [http://github.com/ntamas/gfam].

If you are interested in the latest and greatest (but maybe unstable) version
of GFam, you can get it from GitHub [http://github.com/ntamas/gfam] - just click on the Download source
button on the GitHub [http://github.com/ntamas/gfam] page.
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Introduction


What is GFam?

GFam (or gfam) is a Python module to aid the automatic annotation of gene
families based on consensus domain architectures. gfam started out as a
collection of loosely coupled Python scripts that process the output of
iprscan (a tool to obtain domain assignments of individual genes from
InterPro) and conduct some analyses using BLAST to detect novel, previously
uncharacterised domains. The original domains and the detected novel domain
candidates are then used to create a consensus domain assignment for each gene
sequence. Genes are then finally assigned to families based on their domain
architectures. Finally, the tool derives functional labels for families based
on the Gene Ontology and an assignment between InterPro domains and Gene
Ontology terms. Optionally, a Gene Ontology overrepresentation analysis can also
be conducted on the GO annotations of individual domains in the same sequence to
reinforce the functional labels.




Requirements

You will need the following tools to run gfam:


	Python [http://www.python.org] 2.5 or later. Python 3 is not supported yet. gfam was also
tested with Jython [http://www.jython.org] 2.5.1.

	NCBI BLAST [ftp://ftp.ncbi.nlm.nih.gov/blast/executables/release/LATEST]; in particular, the formatdb and blastall tools
from the legacy C-based BLAST distribution. You can still use gfam
wit the newer, C++-based BLAST if you have the legacy_blast.pl
wrapper script in the BLAST folder.



The latest release of SciPy [http://www.scipy.org] is recommended, but not necessary.
gfam uses SciPy [http://www.scipy.org] for calculating the logarithm of the gamma
function in the overrepresentation analysis routines, but it falls
back to a (somewhat slower) Python implementation if SciPy [http://www.scipy.org] is
not installed.




For the impatient

gfam is driven by a master configuration file named gfam.cfg.
A sample configuration file is given in the distribution. The sample
file works fine for the gene sequences of Arabidopsis thaliana; for
other species, you might have to tweak some of the parameters, and you
will surely have to modify the paths to the data files. The configuration
file is documented and mostly self-explanatory.

If you do not have a configuration file for some reason, or you want to
generate a new one from scratch, you can ask gfam to do it:

$ bin/gfam init





This will create a default configuration file named gfam.cfg (if it does
not exist already) and lists the configuration options you have to set in
the file before starting GFam.

If the configuration file is well in order, you can launch gfam by typing:

$ bin/gfam





This will run the whole gfam analysis pipeline using the configuration
specified in gfam.cfg. If your configuration file is named otherwise,
you can run it by typing:

$ bin/gfam -c my_config.cfg





The results will be put into whatever work directory you specified in the
configuration file. By default, this is named work. See Output files
for more details on what will be calculated and where you can find them.




Questions, comments

If you have a question or a comment about gfam or you think you have
found a bug, feel free to contact me using the email address given in the
header of this document.







          

      

      

    


    
         Copyright 2010-2011, Tamás Nepusz, Rajkumar Sasidharan.
      Created using Sphinx 1.1.3.
    

 









  
     TEST Brought to you by Read the Docs
    
      
        	latest

      
    

  










  
  
    
    

    Running GFam










  

  



    
    

    
 
  
  
    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	GFam 1.1 documentation 
 
      

    


    
      
          
            
  
Running GFam


Input files

The input files can be grouped into three large groups: data files, mapping
files and the configuration file.  Data files contain the actual input data
that is specific to a given organism. Mapping files usually map between IDs of
different data sources (for instance, from InterPro domain IDs to Gene Ontology
terms) or IDs to human-readable descriptions. The configuration file tells GFam where to find the data files and the mapping files.
When one wants to process a new organism with GFam, it is therefore usually
enough to replace the paths of the data files in the configuration only, as the
mapping files can be re-used for multiple analyses.

GFam requires the following data files:


	Sequence file

	This file must contain all the sequences that are being analysed and
annotated by GFam.

	Domain assignment file

	This file is produced by running iprscan, the command-line variant of
InterProScan [http://www.ebi.ac.uk/Tools/InterProScan] and it assigns sections of each segment in the sequence
file to known domains in InterPro [http://www.ebi.ac.uk/interpro]. The sequence IDs in this file must be
identical to the ones in the sequence file; if not, one can specify a
regular expression in the configuration file to
extract the sequence ID from the FASTA defline.



Besides the data files, the following mapping files are also needed:


	InterPro – GO mapping

	This file maps InterPro IDs to their corresponding GO terms, and it
can be obtained from <http://www.geneontology.org/external2go/interpro2go>.

	Mapping of domain IDs to human-readable names

	Fairly self-explanatory; a tab-separated flat file with two columns, the
first being the domain ID and the second being the corresponding
human-readable name. It is advisable to construct a file which contains at
least the InterPro, Pfam, SMART and Superfamily IDs as these are the most
common (and many Pfam, SMART and Superfamily IDs do not have corresponding
InterPro IDs yet). If you want to create such a mapping file easily, please
refer to Updating the mapping of IDs to human-readable names.

	Parent-child relationships of InterPro terms

	This file contains the parent/child relationships between InterPro
accession numbers to indicate family/subfamily relationships. This file
is used to map each InterPro subfamily ID to the corresponding family
ID, and it can be obtained from EBI [ftp://ftp.ebi.ac.uk/pub/databases/interpro/ParentChildTreeFile.txt].

	The Gene Ontology

	This file contains the Gene Ontology [http://www.geneontology.org] in OBO format, and it is
required only for the label assignment and overrepresentation analysis
steps. The latest version of the file can be obtained from the homepage of
the Gene Ontology [http://www.geneontology.org] project.



GFam accepts uncompressed files or files compressed with gzip or bzip2
for both the data and the mapping files. Compressed files will be decompressed
on-the-fly in memory when needed.




The configuration file

The default configuration file of GFam is called gfam.cfg, but you can
specify an alternative configuration file name on the command line using the
-c switch. A sample configuration file is included in the GFam distribution;
however, you can always generate a new one by running the following command:

$ bin/gfam init



This will generate a file named gfam.cfg in the current directory and list
the configuration keys you have to modify before starting your analyses.

The configuration file consists of sections, led by a [section] header and
followed by name=value entries. Lines beginning with # or ; are
ignored and used to provide comments. Lines containing whitespace characters
only are also ignored. For more details about the configuration file format,
please refer to the ConfigParser module [http://docs.python.org/library/configparser.html] in the documentation of Python.

The full list of supported configuration keys and their default values is as
follows:




Output files

GFam produces four output files in the output folder specified in the
configuration file. These files are as follows:


domain_architectures.tab

A simple tab-separated flat file that contains the inferred domain architecture
for each sequence in a simple, summarised format. The file is sorted in a way
such that more frequent domain architectures are placed at the top. Sequences
having the same domain architecture are sorted according to their IDs.

The file has six columns. The first column is the ID of the sequence (e.g.,
AT1G09650.1), the second is the sequence length (e.g, 382). The third
column contains a summary of the domain architecture of the sequence, where
domains are ordered according to the starting position, and consecutive domain
IDs are separated by semicolons (e.g., IPR022364;IPR017451). The InterPro
domain ID is used whenever possible. Novel domains identified by GFam are
denoted by NOVELxxxxx, where xxxxx is a five-digit identifier.  The
fourth column contains the frequency of this domain architecture (i.e. the
number of sequences that have the same domain architecture). The fifth column
is the same as the third, but the exact starting and ending positions of the
domain are also added in parentheses after the domain ID (e.g.,
IPR022364(9-57);IPR017451(112-357)). The sixth column contains the
concatenated human-readable descriptions of the domains (for instance, F-box
domain, Skp2-like;F-box associated interaction domain).




domain_architecture_details.txt

This file is the human-readable variant of domain_architectures.tab (which
is more suitable for machine parsing). It contains blocks separated by two
newline characters; each block corresponds to a sequence and has the following
format:

AT1G09650.1
    Primary assignment source: HMMTigr
    Number of data sources used: 2
    Data sources: superfamily, HMMTigr
    Coverage: 0.772
    Coverage w/o novel domains: 0.772
       9-  57: SSF81383 (superfamily, stage: 2) (InterPro ID: IPR022364)
               F-box domain, Skp2-like
     112- 357: TIGR01640 (HMMTigr, stage: 1) (InterPro ID: IPR017451)
               F-box associated interaction domain





The first line of each block is unindentend and contains the sequence ID. The
remaining lines are indented by at least four spaces. The second line contains
the name of the InterPro data source that was used to come up with the primary
assignment in step 2 of the pipeline (see
more details later in Steps of the GFam pipeline), followed by the number of data sources
used to construct the final assignment, and of course the data sources
themselves. The fifth and sixth lines contain the fraction of positions in the
sequence that are covered by at least one domain; the fifth line takes into
account novel domains (NOVELxxxxx), while the sixth line does not. The
remaining lines list the domains themselves along with the data source they
came from and the stage in which they were selected.  For more details about
the stages, see Steps of the GFam pipeline.




assigned_labels.txt

TODO




overrepresentation_analysis.txt

This file contains the results of the Gene Ontology overrepresentation analysis
for the domain architecture of each sequence. Note that since the results of
the overrepresentation analysis depend only on the domain architecture,
the results of sequences having the same domain architecture will be completely
identical.

The file consists of blocks separated by two newlines, and each block
corresponds to one sequence. Each block has the following format:

AT1G61040.1
  0.0009: GO:0016570 (histone modification)
  0.0009: GO:0016569 (covalent chromatin modification)
  0.0024: GO:0016568 (chromatin modification)
  0.0036: GO:0006325 (chromatin organization)
  0.0049: GO:0051276 (chromosome organization)
  0.0055: GO:0006352 (transcription initiation)
  0.0095: GO:0006461 (protein complex assembly)
  0.0109: GO:0065003 (macromolecular complex assembly)
  0.0111: GO:0006996 (organelle organization)
  0.0126: GO:0043933 (macromolecular complex subunit organization)





In each block, the first number is the p-value obtained from the
overrepresentation analysis, the second column is the GO ID. The name
corresponding to the GO label is contained in parentheses.  Blocks containing a
sequence ID only represent sequences with no significant overrepresented GO
labels in their domain architecture.






Command line options

GFam is started by the master script in bin/ as follows:

$ bin/gfam





The exact command line syntax is bin/gfam [options] [command], where
command is one of the following:


	init

	Generates a configuration file for GFam from scratch. The name of the
configuration file will be gfam.cfg by default, but you can change
it with the -c switch. GFam will refuse to overwrite existing
configuration files. Example:

$ bin/gfam -c a_lyrata.cfg init







	run

	Runs the whole GFam pipeline. This is the default command.

	clean

	Removes the temporary directory used to store the intermediate results.
The name of the temporary directory is determined by the folder.work
configuration option in the configuration file.


Warning

If the output directory is the same as the temporary directory
(folder.work is equal to folder.output in the configuration),
the clean command will also delete the final results from the output
folder!







The default configuration file used is always gfam.cfg, but it can be
overridden with the -c switch. For example, the following command will
clean the work directory specified in a_lyrata.cfg:

$ bin/gfam -c a_lyrata.cfg clean





The following extra command line switches are also available:





	
-h, --help
	shows a help message and then exits

	
-c FILE, --config-file=FILE


		specifies the name of the configuration FILE

	
-v, --verbose
	enables verbose logging

	
-d, --debug
	shows debug messages as well

	
-f, --force
	forces the recalculation of the results of
intermediary steps in the GFam pipeline even
when GFam thinks everything is up-to-date.




Besides the master script, there are scripts for re-running individual steps of
the GFam pipeline. These scripts are separate Python modules in
gfam/scripts and they correspond to the steps of the GFam pipeline. It is unlikely that you will have to run them by hand, but if you
do, you have to supply the necessary input on the standard input stream of the
scripts.  For instance, if you want to do some custom filtering on a BLAST
tabular result file, you can use gfam/scripts/blast_filter.py as follows:

$ python -m gfam.scripts.blast_filter -e 1e-5 <input.blast





This will filter input.blast and remove all entries with an E-value
larger than 10-5. The result will be written to the standard
output.

You can get a summary of the usage of each script in gfam/scripts
as follows:

$ python -m gfam.scripts.blast_filter --help





Of course replace blast_filter with the name of the script you are
interested in.  The default values of the command line switches of these
scripts come from the configuration file, and they
also support -c to change the name of the configuration file.

In 99.9999% of the cases, you will only have to do bin/gfam init
to create a new configuration file, bin/gfam to run the pipeline and
bin/gfam clean to clean up the results.
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Steps of the GFam pipeline

The GFam pipeline consists of multiple steps. In this section, we will
describe what input files does the GFam pipeline operate on, how the steps
are executed in order one by one and what output files are produced in the
end. First, a short overview of the whole process will be given, followed
by a more detailed description of each step.


Overview of a GFam analysis

GFam infers annotations for sequences by first finding a consensus domain
architecture for each step, then collecting Gene Ontology terms for each domain
in a given domain architecture, and selecting a few more specific ones.
Optionally, a Gene Ontology overrepresentation analysis can also be performed
on the terms to determine whether some GO terms occur more frequently in a given
domain architecture than expected by random chance. Out of these three steps,
the calculation of the consensus domain architecture is the most complicated
one, as GFam has to account for not only the known domain assignments from
InterPro, but also for the possible existence of novel, previously
uncharacterised domains.  The whole pipeline can be broken to 8+1 steps as
follows:


	Extracting valid gene IDs from the sequence file.

	Determining a preliminary domain architecture for each sequence by
considering known domains from the domain assignment file only.

	Finding the unassigned regions of each sequence; i.e. the regions
that are not assigned to any domain in the preliminary domain
architecture.

	Running an all-against-all BLAST comparison of the unassigned sequence
fragments and filtering BLAST results to determine which fragments may
correspond to the same novel domain. Such filtering is based primarily on
E-values and alignment lengths. At this point, we obtain a graph on the
sequence fragments where two fragments are connected if they passed the
BLAST filter.

	Calculating the Jaccard similarity of the sequence fragments based on
the connection patterns and removing those connections which have a
low Jaccard similarity.

	Finding the connected components of the remaining graph. Each connected
component will correspond to a tentative novel domain.

	Calculating the consensus domain architecture by merging the
preliminary domain architecture with the newly detected novel domains.

	Selecting a functional label for each of the domain architectures based
on a mapping between InterPro domains and Gene Ontology terms.

	Conducting a Gene Ontology overrepresentation analysis on each of
the sequences and their domain architectures to derive the final
annotations.



These steps will be described more in detail in the next few subsections.




Step 1 – Extracting valid gene IDs

In this step, the input sequence file is read once and the gene IDs are
extracted from the FASTA deflines. The gene ID is assumed to be the first word
of the defline. If the deflines in the original FASTA file follow some other
format, one can supply a regular expression in the configuration file that can be used to extract the actual ID from the first word of
the defline.




Step 2 – Preliminary domain architecture

This step processes the domain assignment file and tries to determine a
preliminary domain architecture for each sequence. A preliminary domain
architecture considers known domains from InterPro only. Domain architectures
for each sequence are determined in isolation, so the domain architecture of
one sequence has no effect on another.

For each sequence, we first collect the set of domain assignments from the
domain assignment file. Each assignment has a data source (e.g., HMMPfam,
Superfamily, HMMSmart and so on), a domain ID according to the schema of the
source, the starting and ending indices of the domain in the amino acid chain,
an optional InterPro ID to which the domain ID is mapped, and an optional
E-value. First, the list is filtered based on E-values, where one might apply
different E-value thresholds for different data sources. This leads to a list
of trusted domain assignments that are not likely to be artifacts. After that,
GFam performs multiple passes on the list of trusted domain assignments,
starting with a subset focused on more reliable data sources.  Less reliable
data sources join in the later stages, and it is possible that some data
sources are not considered at all.

During the first pass, one single data source that is giving the highest
coverage of the sequence is selected from the most reliable data sources.
This data source will be referred to as the primary data source, and the
domains of the primary data source will be called the primary assignment.
After the first pass, the primary assignment will be extended by domains
from other data sources in a greedy manner using the following rules:


	Larger domains from other data sources will be considered first.
(In other words, the remaining assignments not included already in the
primary assignment are sorted by length in descending order).

	Domains are considered one by one for addition to the primary
assignment.

	If a domain is the exact duplicate of some other domain already added
(in the sense that it starts and ends at the same amino acid index),
the domain is excluded from further consideration.

	If a domain to be added overlaps with an already added domain from another
data source, the domain is excluded from further consideration.

	If a domain to be added is inserted completely into another domain from
the same data source, it is added to the primary assignment and the
process continues with the next domain from step 2. Note that the opposite
cannot happen as we consider domains in decreasing order of their sizes.

	If a domain to be added overlaps partially with an already added domain
from the same data source, the size of the overlap decides what to do.
Overlaps smaller than a given threshold are allowed, the domain will be
added and the process continues from step 2. Otherwise, the domain is
excluded from further consideration and the process continues from step 2
until there are no more domains left in the current stage.



We call this five-step procedure the expansion of a primary assignment.
Remember, GFam works in multiple stages; the first stage creates the primary
assignment with a limited set of trusted data sources, the second stage
expands the primary assignment with an extended set of data sources, and there
might be a third or fourth stage and so on with even more extended sets of
data sources. For Arabidopsis thaliana and Arabidopsis lyrata, we found the
following strategy to be successful:


	Assignments from HAMAP, PatternScan, FPrintScan, Seg and Coil are thrown
away completely for the following reasons:


	HAMAP may not be a suitable resource for eukaryotic family annotation as
it is geared towards completely sequenced microbial proteome sets and
provides manually curated microbial protein families in
UniProtKB/Swiss-Prot [4]. For Arabidopsis thaliana, there were only
133 domains annotated by HAMAP and all domains had E-values larger than
0.001.

	PatternScan and FPrintScan [5] are resources for identifying motifs in a
sequence and are not very helpful in understanding larger evolutionary
units or domains. The match size ranges between 3 and 103 amino acids for
PatternScan and between 4 and 30 amino acids for FPrintScan.

	Seg and Coil were ignored as these define regions of low compositional
complexity and coiled coils, respectively, and are not particularly
informative in the context of defining gene families.





	An E-value threshold of 10-3 is applied to the remaining data
sources, except for Superfamily, HMMPanther, Gene3D and HMMPIR which are
taken into account without any thresholding.

The threshold of 10-3 was chosen based on the following
observation. There are 3,816 domain assignments from HMMPfam with a E-value
larger than 0.1, 1,625 assignments with an E-value between 0.1 and 0.01 and
1,650 assignments with an E-value between 0.01 and 0.001. We looked at the
type of domains that had an E-value between 0.1 and 0.01 and 0.01 and 0.001.
We noticed that at least 80% of the domains are some kind of repeat domains
(PPR, Kelch, LLR, TPR etc) or short protein motifs (different types of zinc
fingers, EF-hand, HLH etc).  It is reasonable to believe that at an E-value
less than 0.001, the majority of the domains are likely to be spurious
matches due to the sequence nature (low-complex and short) of these domains.
We decided to consider domains from HMMPfam that had an E-value of 0.001 or
smaller. We may miss but only a handful of real domains if we choose 0.001
as our E-value threshold.  However, we would like to point out that the
threshold is not hard-wired into GFam, rather it is a parameter than can be
tuned for each assignment source to suit the users’ needs.



	GFam performs three passes on the list of domain assignments obtained up
to now. The first and second passes do not consider HMMPanther and Gene3D
assignments as they tend to split the sequence too much. The third stage
considers all the data sources.



	The maximum overlap allowed between two domains of the same source
(excluding complete insertions which are always accepted) is 30 amino
acids. This was based on the distribution of domain overlap lengths
for the different resources.





The stages and the E-value thresholds are configurable in the
configuration file.




	[4]	Lima T, Auchincloss AH, Coudert E, Keller G, Michoud K, Rivoire C,
Bulliard V, de Castro E, Lachaize C, Baratin D, Phan I, Bougueleret L
and Bairoch A. HAMAP: a database of completely sequenced microbial
proteome sets and manually curated microbial protein families in
UniProtKB/Swiss-Prot. Nucl Acids Res 37(Database):D471-D478,
2009.







	[5]	Scordis P, Flower DR and Attwood TK. FingerPRINTScan: intelligent
searching of the PRINTS motif database. Bioinformatics
15(10):799-806, 1999.







Step 3 – Finding unassigned sequence fragments

This step begins the exploration for novel, previously uncharacterised domains
among the sequence fragments left uncovered by the preliminary assignment that
we calculated in step 2.  We improvised on
the method described by Haas et al [6] to identify novel domains.  The step
iterates over each sequence and extract the fragments that are not covered by
any of the domains in the preliminary domain assignment.  Sequences or
fragments that are too short are thrown away, the remaining fragments are
written in FASTA format into an intermediary file. The sequence and fragment
length thresholds are configurable. For the analysis of A.thaliana and
A.lyrata sequences, the minimum fragment length is set to 75 amino acids.




	[6]	Haas BJ, Wortman JR, Ronning CM, Hannick LI, Smith RK Jr, Maiti R,
Chan AP, Yu C, Farzad M, Wu D, White O, Town CD. Complete reannotation
of the Arabidopsis genome: methods, tools, protocols and the final
release. BMC Biol 3:7, 2005.







Step 4 – All-against-all BLAST comparison and filtering

This step uses the external NCBI BLAST executables (namely formatdb and
blastall) to determine pairwise similarity scores between the unassigned
sequence fragments. First, a database is created from all sequence fragments
using formatdb in a temporary folder, then a BLAST query is run on the
database with the same set of unassigned fragments using blastall -p
blastp. Matches with a sequence percent identity or an alignment length less
than a given threshold are thrown away, so are matches with an E-value larger
than a given threshold.  The user may choose between using unnormalised
alignment lengths or normalised alignment lengths with various normalisation
methods (normalising with the length of the smaller, the larger, the query or
the hit sequence).

For A.thaliana and A.lyrata, the following settings were used:


	Minimum sequence identity: 45%

	Minimum normalised alignment length: 0.7 (normalisation done by the length
of the query sequence)

	Maximum E-value: 10-3






Step 5 – Calculation of Jaccard similarity

After the fourth step, we have essentially obtained a graph representation of
similarity relations between unassigned sequence fragments. In this graph
representation, each sequence fragment is a node, and two fragments are
connected by an edge if they passed the BLAST filter in step 4.  We will be looking for tightly connected regions in
this graph in order to identify sequence fragments that potentially contain the
same novel domain.  It is a reasonable assumption that if two sequences contain
the same novel domain, their neighbour sets in the similarity graph should be
very similar.  Jaccard similarity is a way of quantifying similarity between
nodes in a graph by looking at their neighbour sets. Let i and j denote two
nodes in a graph and let [image: \Gamma_i] denote the set consisting of i
itself and i‘s neighbours in the graph. The Jaccard similarity of i and j
is then defined as follows:


[image: \sigma_{ij} = \frac{| \Gamma_i \cap \Gamma_j |}{|\Gamma_i \cup \Gamma_j|}]


where [image: | \dots |] denotes the size of a set.  We calculate the Jaccard
similarity of each connected pairs of nodes and keep those which have a Jaccard
similarity larger than 0.66. This corresponds to keeping pairs where roughly
2/3 of their neighbours are shared. The Jaccard similarity threshold can be
adjusted in the configuration file.




Step 6 – Identification of novel domains

Having obtained the graph filtered by Jaccard similarity in step 5, we detect the connected regions of this graph by
performing a simple connected component analysis. In other words, sequence
fragments corresponding to the same connected component of the filtered graph
are assumed to belong to the same novel domain. Note that these novel domains
should be treated with care, as some may belong to those that were already
characterised in the original input domain assignment file but were filtered in
step 2.

Novel domains are given temporary IDs consisting of the string NOVEL and
a five-digit numerical identifier; for instance, NOVEL00042 is the 42nd
novel domain found during this process. Components containing less than four
sequence fragments are not considered novel domains. The size threshold of
connected components can be adjusted in the configuration file.




Step 7 – Consensus domain architecture

This step determines the final consensus domain architecture for each sequence
by starting out from the preliminary domain architecture obtained in step
2 and extending it with the novel domains found
for the given sequence. The consensus domain architectures are written into two
files, one containing a simpler flat-file representation of the consensus
architectures suitable for further processing, while the other containing a
detailed domain architecture description with InterPro IDs and human-readable
descriptions for each domain in each sequence. This latter file also lists the
primary data source for the sequence, the coverage of the sequence with and
without novel domains, and also the number of the stage in which each domain
was selected into the consensus assignment.




Step 8 – Functional label assignment

This step tries to assign a functional label to every sequence by looking at
the list of its domains and collecting the corresponding Gene Ontology terms
using a mapping file that assigns Gene Ontology terms to InterPro IDs. Such
a file can be obtained from the InterPro2GO [http://www.geneontology.org/external2go/interpro2go] project. For each sequence, the
collected Gene Ontology terms are filtered such that only those terms are kept
which are either leaf terms (i.e. they have no descendants in the GO tree) or
none of their descendants are included in the set of collected terms. These
terms are then written in decreasing order of specificity to an output file,
where specificity is assessed by the number of domains a given term is assigned
to in the InterPro2GO [http://www.geneontology.org/external2go/interpro2go] mapping file; terms assigned to a smaller number of
domains are considered more specific.




Step 9 – Overrepresentation analysis

This optional step conducts a Gene Ontology [http://www.geneontology.org] overrepresentation analysis on
the domain architecture of the sequences given in the input file. For each
sequence, we find the Gene Ontology terms corresponding to each of the domains
in the consensus domain architecture of the sequence, and check each term using
a hypergeometric test to determine whether it is overrepresented within the
annotations of the sequence domains or not.

During the overrepresentation analysis, multiple hypergeometric tests are
performed to determine the significantly overrepresented terms for a single
sequence. GFam lets the user account for the effects of multiple hypothesis
testing by correcting the p-values either by controlling the family-wise
error rate (FWER) using the Bonferroni or Sidák methods, or by controlling
the false discovery rate (FDR) using the Benjamini-Hochberg method.

The result of the overrepresentation analysis is saved into a human-readable
text file that lists the overrepresented Gene Ontology terms in increasing
order of p-values for each sequence.
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Supplementary scripts

The scripts described in this chapter are not parts of the main GFam pipeline,
but they provide useful extra functionality nevertheless. These scripts are
found in the bin subdirectory of GFam, and they can be run separately from
the command line, provided that GFam itself is on the Python path. Since the
current directory is always on the Python path, it is best to run these
scripts from the root directory of GFam.


Plotting descriptive statistics of the input file

The GFam pipeline has several parameters (e.g., E-value and domain length
thresholds) with sensible default values, but in order to achieve the best
results on a given dataset, these parameters can be adapted to the properties
of the input data if necessary. Such decisions are made by humans after
inspecting the distribution of E-values and domain lengths, and the distribution
of overlap sizes between different domains in the InterPro domain assignment
file. GFam can readily generate these plots using Matplotlib [http://matplotlib.sourceforge.net], a plotting library
for Python. Matplotlib is available as a package in all major Linux distributions,
and the project provides an installer for Microsoft Windows and Mac OS X.

The script can be invoked as follows (assuming that the configuration file is
named gfam.cfg):

$ bin/plot.py -c gfam.cfg figurename





where figurename is the name of the figure to be plotted. You may also save
figures to an output file:

$ bin/plot.py -c gfam.cfg -o *outfile*.pdf figurename1 figurename2 ...





The supported output formats include PDF, PNG, JPG and SVG, provided that the
corresponding Matplotlib [http://matplotlib.sourceforge.net] backends are installed. ASCII art representations
of the histograms may also be printed if the extension of the output file is
.txt.

To get a list of the supported figure names, specify list in place of the
figure name:

$ bin/plot.py -c gfam.cfg list





The supported figures are as follows:


	evalue_distribution

	Plots the count or relative frequency of domains with a given log E-value,
sorted by different data sources in the InterPro input file, using a bin
for each integer log E-value.

	length_distribution

	Plots the count or relative frequency of domains with a given length,
sorted by different data sources in the InterPro input file, using 25
bins up to a length of at most 750. The rightmost column contains all
domains with length greater than 750.

	overlap_distribution

	Plots the count or relative frequency of overlap length between all pairs
of domains that overlap by at least one residue and have the same data
source. The plots are sorted by data sources and use a bin width of 5.




Command line options





	
-a FILE, --assignment-file=FILE


		If you don’t have a GFam configuration file or you want to run
the script on a different InterPro assignment file (not the one
specified in the configuration file), you may specify the name
of the InterPro file directly using this switch. In this case,
-c is not needed.

	
--cumulative
	Plot cumulative distributions (if that makes sense for the
selected plot).

	
-o FILE, --output=FILE


		Specify the name of the file to save the plots to. The desired
format of the file is inferred from its extension. Supported
formats: PNG, JPG, SVG and PDF (assuming that the required
Matplotlib [http://matplotlib.sourceforge.net] backends are installed). You may also use a
.txt extension here, which turns on --text-mode
automatically.

	
--relative
	Plot relative frequencies instead of absolute counts on the Y
axis (if that makes sense for the selected plot), and use a
line chart instead of a bar chart.

	
--survival
	Plot survival distributions (if that makes sense for the
selected plot), and use a line chart instead of a bar chart.

	
-t, --text-mode


		Print an ASCII art representation of each histogram. This
option is useful if you are sitting at a non-graphical
terminal (e.g., an ssh shell) or if you want to dump the
histograms to a text file that you can analyze later. This
option is turned on automatically if the extension of the
output file is .txt.









Updating the mapping of IDs to human-readable names

GFam relies on an external tab-separated flat file to map domain IDs to
human-readable descriptions when producing the final output.  Such a file
should contain at least the InterPro, Pfam, SMART and Superfamily IDs.  The
GFam distribution contains a script that can download the mappings
automatically from known sources on the Internet. The script can be invoked as
follows:

$ bin/download_names.py >data/names.dat





This will download the InterPro, Pfam, SMART and Superfamily IDs from the
Internet and prepare the appropriate name mapping file in data/names.dat.
If you wish to put it elsewhere, simply specify a different output file name.
If you omit the trailing >data/names.dat part, the mapping will be written
into the standard output. You can also compress the mapping file on-the-fly
using gzip or bzip2 and use the compressed file directly in the
configuration file as GFam will uncompress it when needed. The following
command constructs a compressed name mapping file:

$ bin/download_names.py | gzip -9 >data/names.dat.gz





Note that the script relies on the following locations to download data:


	<ftp://ftp.ebi.ac.uk/pub/databases/interpro/names.dat> for the InterPro
name mapping

	<http://pfam.sanger.ac.uk/families?output=text> for the Pfam name mapping

	<http://smart.embl-heidelberg.de/smart/descriptions.pl> for the SMART
name mapping

	<http://scop.mrc-lmb.cam.ac.uk/scop/parse/> for the SCOP description files
(named dir.des.scop.txt_X.XX, where X.XX stands for the SCOP
version number). It also relies on the most recent version of the SCOP
description file being linked from the above page. The script will simply
scan the links of the above page to determine what is the most recent
version of SCOP. If the version number cannot be determined, the script
will silently skip downloading the SCOP IDs.
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API documentation


gfam – The main module




gfam.assignment – Routines related to sequence-domain annotations




gfam.blast – Handling BLAST file formats and utilities




gfam.compat – Compatibility classes for Python 2.5




gfam.config – Configuration file handling




gfam.enum – A simple enumeration class




gfam.fasta – FASTA parser and emitter




gfam.go – Handling the Gene Ontology


gfam.go.obo – Parsing OBO ontology files




gfam.go.overrepresentation – Overrepresentation analysis






gfam.interpro – Handling InterPro-related files




gfam.modula – Modular calculation framework

Modula is a modular calculation framework for Python that allows you to
define tasks that depend on input files and on each others. Modula will
figure out which tasks have to be executed in which order in order to
calculate the final results – this is done by a simple depth first
search on the task dependency graph.

Modula started out as a separate project, and you don’t have to know its
internals in order to use the GFam API. The only reason why it has been
placed as a submodule of GFam is to avoid foricng users to install Modula
separately. The Modula API is not documented here as it is not an internal
part of GFam. Modula is used only by the GFam master script (see
gfam.scripts.master) to execute the calculation steps in the
proper order.




gfam.sequence – Simple sequence and sequence record classes




gfam.scripts – Command line scripts

Each step in the GFam pipeline is implemented in a separate
submodule of gfam.scripts. These submodules contain only a single
class per submodule, derived from gfam.scripts.CommandLineApp. The
submodules are invoked automatically in the right order by a master
script in gfam.scripts.master. In general, you only have to invoke
the master script and it will do the rest for you, but some of the
steps might be useful on their own, so they can be invoked independently
from the command line as:

$ python -m gfam.scripts.modulename





where modulename is the name of the submodule to be executed. You can
get usage information for each submodule by typing:

$ python -m gfam.scripts.modulename --help








gfam.utils – Utility classes and functions
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