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This is the documentation of gfam, a Python module to aid the automatic annotation of gene families based on
consensus domain architecture, written by Tamás Nepusz.

GFam has no official publication yet, but there will soon be one. You are kindly asked to cite the webpage of GFam
until an official GFam publication comes out:

GFam: Automatic annotation of gene families
Tamás Nepusz, Rajkumar Sasidharan and Alberto Paccanaro.
<http://github.com/ntamas/gfam>

GFam can generally be considered stable. We have used it successfully to annotate the whole genome of Arabidopsis
thaliana and Arabidopsis lyrata. Please email the author if you discover any bugs, or feel free to submit a bug report
on GitHub.

If you are interested in the latest and greatest (but maybe unstable) version of GFam, you can get it from GitHub - just
click on the Download source button on the GitHub page.
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CHAPTER

ONE

INTRODUCTION

1.1 What is GFam?

GFam (or gfam) is a Python module to aid the automatic annotation of gene families based on consensus domain
architectures. gfam started out as a collection of loosely coupled Python scripts that process the output of iprscan
(a tool to obtain domain assignments of individual genes from InterPro) and conduct some analyses using BLAST
to detect novel, previously uncharacterised domains. The original domains and the detected novel domain candidates
are then used to create a consensus domain assignment for each gene sequence. Genes are then finally assigned to
families based on their domain architectures. Finally, the tool derives functional labels for families based on the
Gene Ontology and an assignment between InterPro domains and Gene Ontology terms. Optionally, a Gene Ontology
overrepresentation analysis can also be conducted on the GO annotations of individual domains in the same sequence
to reinforce the functional labels.

1.2 Requirements

You will need the following tools to run gfam:

• Python 2.5 or later. Python 3 is not supported yet. gfam was also tested with Jython 2.5.1.

• NCBI BLAST; in particular, the formatdb and blastall tools from the legacy C-based BLAST distribu-
tion. You can still use gfam wit the newer, C++-based BLAST if you have the legacy_blast.pl wrapper
script in the BLAST folder.

The latest release of SciPy is recommended, but not necessary. gfam uses SciPy for calculating the logarithm of the
gamma function in the overrepresentation analysis routines, but it falls back to a (somewhat slower) Python imple-
mentation if SciPy is not installed.

1.3 For the impatient

gfam is driven by a master configuration file named gfam.cfg. A sample configuration file is given in the distribu-
tion. The sample file works fine for the gene sequences of Arabidopsis thaliana; for other species, you might have to
tweak some of the parameters, and you will surely have to modify the paths to the data files. The configuration file is
documented and mostly self-explanatory.

If you do not have a configuration file for some reason, or you want to generate a new one from scratch, you can ask
gfam to do it:

$ bin/gfam init
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This will create a default configuration file named gfam.cfg (if it does not exist already) and lists the configuration
options you have to set in the file before starting GFam.

If the configuration file is well in order, you can launch gfam by typing:

$ bin/gfam

This will run the whole gfam analysis pipeline using the configuration specified in gfam.cfg. If your configuration
file is named otherwise, you can run it by typing:

$ bin/gfam -c my_config.cfg

The results will be put into whatever work directory you specified in the configuration file. By default, this is named
work. See Output files for more details on what will be calculated and where you can find them.

1.4 Questions, comments

If you have a question or a comment about gfam or you think you have found a bug, feel free to contact me using the
email address given in the header of this document.

4 Chapter 1. Introduction



CHAPTER

TWO

RUNNING GFAM

2.1 Input files

The input files can be grouped into three large groups: data files, mapping files and the configuration file. Data files
contain the actual input data that is specific to a given organism. Mapping files usually map between IDs of different
data sources (for instance, from InterPro domain IDs to Gene Ontology terms) or IDs to human-readable descriptions.
The configuration file tells GFam where to find the data files and the mapping files. When one wants to process a new
organism with GFam, it is therefore usually enough to replace the paths of the data files in the configuration only, as
the mapping files can be re-used for multiple analyses.

GFam requires the following data files:

Sequence file This file must contain all the sequences that are being analysed and annotated by GFam.

Domain assignment file This file is produced by running iprscan, the command-line variant of InterProScan and
it assigns sections of each segment in the sequence file to known domains in InterPro. The sequence IDs in
this file must be identical to the ones in the sequence file; if not, one can specify a regular expression in the
configuration file to extract the sequence ID from the FASTA defline.

Besides the data files, the following mapping files are also needed:

InterPro – GO mapping This file maps InterPro IDs to their corresponding GO terms, and it can be obtained from
<http://www.geneontology.org/external2go/interpro2go>.

Mapping of domain IDs to human-readable names Fairly self-explanatory; a tab-separated flat file with two
columns, the first being the domain ID and the second being the corresponding human-readable name. It is
advisable to construct a file which contains at least the InterPro, Pfam, SMART and Superfamily IDs as these
are the most common (and many Pfam, SMART and Superfamily IDs do not have corresponding InterPro IDs
yet). If you want to create such a mapping file easily, please refer to Updating the mapping of IDs to human-
readable names.

Parent-child relationships of InterPro terms This file contains the parent/child relationships between InterPro ac-
cession numbers to indicate family/subfamily relationships. This file is used to map each InterPro subfamily ID
to the corresponding family ID, and it can be obtained from EBI.

The Gene Ontology This file contains the Gene Ontology in OBO format, and it is required only for the label assign-
ment and overrepresentation analysis steps. The latest version of the file can be obtained from the homepage of
the Gene Ontology project.

GFam accepts uncompressed files or files compressed with gzip or bzip2 for both the data and the mapping files.
Compressed files will be decompressed on-the-fly in memory when needed.
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2.2 The configuration file

The default configuration file of GFam is called gfam.cfg, but you can specify an alternative configuration file name
on the command line using the -c switch. A sample configuration file is included in the GFam distribution; however,
you can always generate a new one by running the following command:

$ bin/gfam init

This will generate a file named gfam.cfg in the current directory and list the configuration keys you have to modify
before starting your analyses.

The configuration file consists of sections, led by a [section] header and followed by name=value entries. Lines
beginning with # or ; are ignored and used to provide comments. Lines containing whitespace characters only are
also ignored. For more details about the configuration file format, please refer to the ConfigParser module in the
documentation of Python.

The full list of supported configuration keys and their default values is as follows:

2.3 Output files

GFam produces four output files in the output folder specified in the configuration file. These files are as
follows:

2.3.1 domain_architectures.tab

A simple tab-separated flat file that contains the inferred domain architecture for each sequence in a simple, sum-
marised format. The file is sorted in a way such that more frequent domain architectures are placed at the top.
Sequences having the same domain architecture are sorted according to their IDs.

The file has six columns. The first column is the ID of the sequence (e.g., AT1G09650.1), the second is the se-
quence length (e.g, 382). The third column contains a summary of the domain architecture of the sequence, where
domains are ordered according to the starting position, and consecutive domain IDs are separated by semicolons
(e.g., IPR022364;IPR017451). The InterPro domain ID is used whenever possible. Novel domains identified
by GFam are denoted by NOVELxxxxx, where xxxxx is a five-digit identifier. The fourth column contains the fre-
quency of this domain architecture (i.e. the number of sequences that have the same domain architecture). The fifth
column is the same as the third, but the exact starting and ending positions of the domain are also added in paren-
theses after the domain ID (e.g., IPR022364(9-57);IPR017451(112-357)). The sixth column contains the
concatenated human-readable descriptions of the domains (for instance, F-box domain, Skp2-like;F-box
associated interaction domain).

2.3.2 domain_architecture_details.txt

This file is the human-readable variant of domain_architectures.tab (which is more suitable for machine
parsing). It contains blocks separated by two newline characters; each block corresponds to a sequence and has the
following format:

AT1G09650.1
Primary assignment source: HMMTigr
Coverage: 0.772
Coverage w/o novel domains: 0.772

9- 57: SSF81383 (superfamily, stage: 2) (InterPro ID: IPR022364)
F-box domain, Skp2-like

6 Chapter 2. Running GFam
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112- 357: TIGR01640 (HMMTigr, stage: 1) (InterPro ID: IPR017451)
F-box associated interaction domain

The first line of each block is unindentend and contains the sequence ID. The remaining lines are indented by at least
four spaces. The second line contains the name of the InterPro data source that was used to come up with the primary
assignment in step 2 of the pipeline (see more details later in Steps of the GFam pipeline). The third and the fourth
lines contain the fraction of positions in the sequence that are covered by at least one domain; the third line takes
into account novel domains (NOVELxxxxx), while the fourth line does not. The remaining lines list the domains
themselves along with the data source they came from and the stage in which they were selected. For more details
about the stages, see Steps of the GFam pipeline.

2.3.3 assigned_labels.txt

TODO

2.3.4 overrepresentation_analysis.txt

This file contains the results of the Gene Ontology overrepresentation analysis for the domain architecture of each
sequence. Note that since the results of the overrepresentation analysis depend only on the domain architecture, the
results of sequences having the same domain architecture will be completely identical.

The file consists of blocks separated by two newlines, and each block corresponds to one sequence. Each block has
the following format:

AT1G61040.1
0.0009: GO:0016570 (histone modification)
0.0009: GO:0016569 (covalent chromatin modification)
0.0024: GO:0016568 (chromatin modification)
0.0036: GO:0006325 (chromatin organization)
0.0049: GO:0051276 (chromosome organization)
0.0055: GO:0006352 (transcription initiation)
0.0095: GO:0006461 (protein complex assembly)
0.0109: GO:0065003 (macromolecular complex assembly)
0.0111: GO:0006996 (organelle organization)
0.0126: GO:0043933 (macromolecular complex subunit organization)

In each block, the first number is the p-value obtained from the overrepresentation analysis, the second column is the
GO ID. The name corresponding to the GO label is contained in parentheses. Blocks containing a sequence ID only
represent sequences with no significant overrepresented GO labels in their domain architecture.

2.4 Command line options

GFam is started by the master script in bin/ as follows:

$ bin/gfam

The exact command line syntax is bin/gfam [options] [command], where command is one of the following:

init Generates a configuration file for GFam from scratch. The name of the configuration file will be gfam.cfg
by default, but you can change it with the -c switch. GFam will refuse to overwrite existing configuration files.
Example:

$ bin/gfam -c a_lyrata.cfg init

2.4. Command line options 7
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run Runs the whole GFam pipeline. This is the default command.

clean Removes the temporary directory used to store the intermediate results. The name of the temporary directory
is determined by the folder.work configuration option in the configuration file.

Warning: If the output directory is the same as the temporary directory (folder.work is equal to
folder.output in the configuration), the clean command will also delete the final results from the
output folder!

The default configuration file used is always gfam.cfg, but it can be overridden with the -c switch. For example,
the following command will clean the work directory specified in a_lyrata.cfg:

$ bin/gfam -c a_lyrata.cfg clean

The following extra command line switches are also available:

-h, --help shows a help message and then exits

-c FILE, --config-file=FILE specifies the name of the configuration FILE

-v, --verbose enables verbose logging

-d, --debug shows debug messages as well

-f, --force forces the recalculation of the results of intermediary steps in the GFam pipeline
even when GFam thinks everything is up-to-date.

Besides the master script, there are scripts for re-running individual steps of the GFam pipeline. These scripts are
separate Python modules in gfam/scripts and they correspond to the steps of the GFam pipeline. It is unlikely
that you will have to run them by hand, but if you do, you have to supply the necessary input on the standard input
stream of the scripts. For instance, if you want to do some custom filtering on a BLAST tabular result file, you can use
gfam/scripts/blast_filter.py as follows:

$ python -m gfam.scripts.blast_filter -e 1e-5 <input.blast

This will filter input.blast and remove all entries with an E-value larger than 10-5. The result will be written to
the standard output.

You can get a summary of the usage of each script in gfam/scripts as follows:

$ python -m gfam.scripts.blast_filter --help

Of course replace blast_filter with the name of the script you are interested in. The default values of the
command line switches of these scripts come from the configuration file, and they also support -c to change the name
of the configuration file.

In 99.9999% of the cases, you will only have to do bin/gfam init to create a new configuration file, bin/gfam
to run the pipeline and bin/gfam clean to clean up the results.

8 Chapter 2. Running GFam



CHAPTER

THREE

STEPS OF THE GFAM PIPELINE

The GFam pipeline consists of multiple steps. In this section, we will describe what input files does the GFam pipeline
operate on, how the steps are executed in order one by one and what output files are produced in the end. First, a short
overview of the whole process will be given, followed by a more detailed description of each step.

3.1 Overview of a GFam analysis

GFam infers annotations for sequences by first finding a consensus domain architecture for each step, then collecting
Gene Ontology terms for each domain in a given domain architecture, and selecting a few more specific ones. Option-
ally, a Gene Ontology overrepresentation analysis can also be performed on the terms to determine whether some GO
terms occur more frequently in a given domain architecture than expected by random chance. Out of these three steps,
the calculation of the consensus domain architecture is the most complicated one, as GFam has to account for not only
the known domain assignments from InterPro, but also for the possible existence of novel, previously uncharacterised
domains. The whole pipeline can be broken to 8+1 steps as follows:

1. Extracting valid gene IDs from the sequence file.

2. Determining a preliminary domain architecture for each sequence by considering known domains from the
domain assignment file only.

3. Finding the unassigned regions of each sequence; i.e. the regions that are not assigned to any domain in the
preliminary domain architecture.

4. Running an all-against-all BLAST comparison of the unassigned sequence fragments and filtering BLAST re-
sults to determine which fragments may correspond to the same novel domain. Such filtering is based primarily
on E-values and alignment lengths. At this point, we obtain a graph on the sequence fragments where two
fragments are connected if they passed the BLAST filter.

5. Calculating the Jaccard similarity of the sequence fragments based on the connection patterns and removing
those connections which have a low Jaccard similarity.

6. Finding the connected components of the remaining graph. Each connected component will correspond to a
tentative novel domain.

7. Calculating the consensus domain architecture by merging the preliminary domain architecture with the newly
detected novel domains.

8. Selecting a functional label for each of the domain architectures based on a mapping between InterPro domains
and Gene Ontology terms.

9. Conducting a Gene Ontology overrepresentation analysis on each of the sequences and their domain architec-
tures to derive the final annotations.

These steps will be described more in detail in the next few subsections.

9
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3.2 Step 1 – Extracting valid gene IDs

In this step, the input sequence file is read once and the gene IDs are extracted from the FASTA deflines. The gene ID
is assumed to be the first word of the defline. If the deflines in the original FASTA file follow some other format, one
can supply a regular expression in the configuration file that can be used to extract the actual ID from the first word of
the defline.

3.3 Step 2 – Preliminary domain architecture

This step processes the domain assignment file and tries to determine a preliminary domain architecture for each
sequence. A preliminary domain architecture considers known domains from InterPro only. Domain architectures for
each sequence are determined in isolation, so the domain architecture of one sequence has no effect on another.

For each sequence, we first collect the set of domain assignments from the domain assignment file. Each assignment
has a data source (e.g., HMMPfam, Superfamily, HMMSmart and so on), a domain ID according to the schema of
the source, the starting and ending indices of the domain in the amino acid chain, an optional InterPro ID to which
the domain ID is mapped, and an optional E-value. First, the list is filtered based on E-values, where one might apply
different E-value thresholds for different data sources. This leads to a list of trusted domain assignments that are not
likely to be artifacts. After that, GFam performs multiple passes on the list of trusted domain assignments, starting
with a subset focused on more reliable data sources. Less reliable data sources join in the later stages, and it is possible
that some data sources are not considered at all.

During the first pass, one single data source that is giving the highest coverage of the sequence is selected from the most
reliable data sources. This data source will be referred to as the primary data source, and the domains of the primary
data source will be called the primary assignment. After the first pass, the primary assignment will be extended by
domains from other data sources in a greedy manner using the following rules:

1. Larger domains from other data sources will be considered first. (In other words, the remaining assignments not
included already in the primary assignment are sorted by length in descending order).

2. Domains are considered one by one for addition to the primary assignment.

3. If a domain is the exact duplicate of some other domain already added (in the sense that it starts and ends at the
same amino acid index), the domain is excluded from further consideration.

4. If a domain to be added overlaps with an already added domain from another data source, the domain is excluded
from further consideration.

5. If a domain to be added is inserted completely into another domain from the same data source, it is added to the
primary assignment and the process continues with the next domain from step 2. Note that the opposite cannot
happen as we consider domains in decreasing order of their sizes.

6. If a domain to be added overlaps partially with an already added domain from the same data source, the size of
the overlap decides what to do. Overlaps smaller than a given threshold are allowed, the domain will be added
and the process continues from step 2. Otherwise, the domain is excluded from further consideration and the
process continues from step 2 until there are no more domains left in the current stage.

We call this five-step procedure the expansion of a primary assignment. Remember, GFam works in multiple stages;
the first stage creates the primary assignment with a limited set of trusted data sources, the second stage expands the
primary assignment with an extended set of data sources, and there might be a third or fourth stage and so on with
even more extended sets of data sources. For Arabidopsis thaliana and Arabidopsis lyrata, we found the following
strategy to be successful:

1. Assignments from HAMAP, PatternScan, FPrintScan, Seg and Coil are thrown away completely for the follow-
ing reasons:

10 Chapter 3. Steps of the GFam pipeline
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• HAMAP may not be a suitable resource for eukaryotic family annotation as it is geared towards com-
pletely sequenced microbial proteome sets and provides manually curated microbial protein families in
UniProtKB/Swiss-Prot 1. For Arabidopsis thaliana, there were only 133 domains annotated by HAMAP
and all domains had E-values larger than 0.001.

• PatternScan and FPrintScan 2 are resources for identifying motifs in a sequence and are not very helpful
in understanding larger evolutionary units or domains. The match size ranges between 3 and 103 amino
acids for PatternScan and between 4 and 30 amino acids for FPrintScan.

• Seg and Coil were ignored as these define regions of low compositional complexity and coiled coils,
respectively, and are not particularly informative in the context of defining gene families.

2. An E-value threshold of 10-3 is applied to the remaining data sources, except for Superfamily, HMMPanther,
Gene3D and HMMPIR which are taken into account without any thresholding.

The threshold of 10-3 was chosen based on the following observation. There are 3,816 domain assignments from
HMMPfam with a E-value larger than 0.1, 1,625 assignments with an E-value between 0.1 and 0.01 and 1,650
assignments with an E-value between 0.01 and 0.001. We looked at the type of domains that had an E-value
between 0.1 and 0.01 and 0.01 and 0.001. We noticed that at least 80% of the domains are some kind of repeat
domains (PPR, Kelch, LLR, TPR etc) or short protein motifs (different types of zinc fingers, EF-hand, HLH etc).
It is reasonable to believe that at an E-value less than 0.001, the majority of the domains are likely to be spurious
matches due to the sequence nature (low-complex and short) of these domains. We decided to consider domains
from HMMPfam that had an E-value of 0.001 or smaller. We may miss but only a handful of real domains if we
choose 0.001 as our E-value threshold. However, we would like to point out that the threshold is not hard-wired
into GFam, rather it is a parameter than can be tuned for each assignment source to suit the users’ needs.

3. GFam performs three passes on the list of domain assignments obtained up to now. The first and second passes
do not consider HMMPanther and Gene3D assignments as they tend to split the sequence too much. The third
stage considers all the data sources.

4. The maximum overlap allowed between two domains of the same source (excluding complete insertions which
are always accepted) is 30 amino acids. This was based on the distribution of domain overlap lengths for the
different resources.

The stages and the E-value thresholds are configurable in the configuration file.

3.4 Step 3 – Finding unassigned sequence fragments

This step begins the exploration for novel, previously uncharacterised domains among the sequence fragments left
uncovered by the preliminary assignment that we calculated in step 2. We improvised on the method described by
Haas et al 3 to identify novel domains. The step iterates over each sequence and extract the fragments that are not
covered by any of the domains in the preliminary domain assignment. Sequences or fragments that are too short
are thrown away, the remaining fragments are written in FASTA format into an intermediary file. The sequence and
fragment length thresholds are configurable. For the analysis of A.thaliana and A.lyrata sequences, the minimum
fragment length is set to 75 amino acids.

1 Lima T, Auchincloss AH, Coudert E, Keller G, Michoud K, Rivoire C, Bulliard V, de Castro E, Lachaize C, Baratin D, Phan I, Bougueleret
L and Bairoch A. HAMAP: a database of completely sequenced microbial proteome sets and manually curated microbial protein families in
UniProtKB/Swiss-Prot. Nucl Acids Res 37(Database):D471-D478, 2009.

2 Scordis P, Flower DR and Attwood TK. FingerPRINTScan: intelligent searching of the PRINTS motif database. Bioinformatics 15(10):799-
806, 1999.

3 Haas BJ, Wortman JR, Ronning CM, Hannick LI, Smith RK Jr, Maiti R, Chan AP, Yu C, Farzad M, Wu D, White O, Town CD. Complete
reannotation of the Arabidopsis genome: methods, tools, protocols and the final release. BMC Biol 3:7, 2005.

3.4. Step 3 – Finding unassigned sequence fragments 11
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3.5 Step 4 – All-against-all BLAST comparison and filtering

This step uses the external NCBI BLAST executables (namely formatdb and blastall) to determine pairwise
similarity scores between the unassigned sequence fragments. First, a database is created from all sequence fragments
using formatdb in a temporary folder, then a BLAST query is run on the database with the same set of unassigned
fragments using blastall -p blastp. Matches with a sequence percent identity or an alignment length less
than a given threshold are thrown away, so are matches with an E-value larger than a given threshold. The user may
choose between using unnormalised alignment lengths or normalised alignment lengths with various normalisation
methods (normalising with the length of the smaller, the larger, the query or the hit sequence).

For A.thaliana and A.lyrata, the following settings were used:

• Minimum sequence identity: 45%

• Minimum normalised alignment length: 0.7 (normalisation done by the length of the query sequence)

• Maximum E-value: 10-3

3.6 Step 5 – Calculation of Jaccard similarity

After the fourth step, we have essentially obtained a graph representation of similarity relations between unassigned
sequence fragments. In this graph representation, each sequence fragment is a node, and two fragments are connected
by an edge if they passed the BLAST filter in step 4. We will be looking for tightly connected regions in this graph in
order to identify sequence fragments that potentially contain the same novel domain. It is a reasonable assumption that
if two sequences contain the same novel domain, their neighbour sets in the similarity graph should be very similar.
Jaccard similarity is a way of quantifying similarity between nodes in a graph by looking at their neighbour sets. Let i
and j denote two nodes in a graph and let Γi denote the set consisting of i itself and i‘s neighbours in the graph. The
Jaccard similarity of i and j is then defined as follows:

σij =
Γi ∩ Γj

Γi ∪ Γj

We calculate the Jaccard similarity of each connected pairs of nodes and keep those which have a Jaccard similarity
larger than 0.66. This corresponds to keeping pairs where roughly 2/3 of their neighbours are shared. The Jaccard
similarity threshold can be adjusted in the configuration file.

3.7 Step 6 – Identification of novel domains

Having obtained the graph filtered by Jaccard similarity in step 5, we detect the connected regions of this graph by
performing a simple connected component analysis. In other words, sequence fragments corresponding to the same
connected component of the filtered graph are assumed to belong to the same novel domain. Note that these novel
domains should be treated with care, as some may belong to those that were already characterised in the original input
domain assignment file but were filtered in step 2.

Novel domains are given temporary IDs consisting of the string NOVEL and a five-digit numerical identifier; for
instance, NOVEL00042 is the 42nd novel domain found during this process. Components containing less than four
sequence fragments are not considered novel domains. The size threshold of connected components can be adjusted
in the configuration file.

12 Chapter 3. Steps of the GFam pipeline
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3.8 Step 7 – Consensus domain architecture

This step determines the final consensus domain architecture for each sequence by starting out from the preliminary
domain architecture obtained in step 2 and extending it with the novel domains found for the given sequence. The con-
sensus domain architectures are written into two files, one containing a simpler flat-file representation of the consensus
architectures suitable for further processing, while the other containing a detailed domain architecture description with
InterPro IDs and human-readable descriptions for each domain in each sequence. This latter file also lists the primary
data source for the sequence, the coverage of the sequence with and without novel domains, and also the number of
the stage in which each domain was selected into the consensus assignment.

3.9 Step 8 – Functional label assignment

This step tries to assign a functional label to every sequence by looking at the list of its domains and collecting the
corresponding Gene Ontology terms using a mapping file that assigns Gene Ontology terms to InterPro IDs. Such a
file can be obtained from the InterPro2GO project. For each sequence, the collected Gene Ontology terms are filtered
such that only those terms are kept which are either leaf terms (i.e. they have no descendants in the GO tree) or none
of their descendants are included in the set of collected terms. These terms are then written in decreasing order of
specificity to an output file, where specificity is assessed by the number of domains a given term is assigned to in the
InterPro2GO mapping file; terms assigned to a smaller number of domains are considered more specific.

3.10 Step 9 – Overrepresentation analysis

This optional step conducts a Gene Ontology overrepresentation analysis on the domain architecture of the sequences
given in the input file. For each sequence, we find the Gene Ontology terms corresponding to each of the domains
in the consensus domain architecture of the sequence, and check each term using a hypergeometric test to determine
whether it is overrepresented within the annotations of the sequence domains or not.

During the overrepresentation analysis, multiple hypergeometric tests are performed to determine the significantly
overrepresented terms for a single sequence. GFam lets the user account for the effects of multiple hypothesis testing
by correcting the p-values either by controlling the family-wise error rate (FWER) using the Bonferroni or Sidák
methods, or by controlling the false discovery rate (FDR) using the Benjamini-Hochberg method.

The result of the overrepresentation analysis is saved into a human-readable text file that lists the overrepresented Gene
Ontology terms in increasing order of p-values for each sequence.

3.8. Step 7 – Consensus domain architecture 13
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CHAPTER

FOUR

SUPPLEMENTARY SCRIPTS

The scripts described in this chapter are not parts of the main GFam pipeline, but they provide useful extra functionality
nevertheless. These scripts are found in the bin subdirectory of GFam, and they can be run separately from the
command line, provided that GFam itself is on the Python path. Since the current directory is always on the Python
path, it is best to run these scripts from the root directory of GFam.

4.1 Plotting descriptive statistics of the input file

The GFam pipeline has several parameters (e.g., E-value and domain length thresholds) with sensible default values,
but in order to achieve the best results on a given dataset, these parameters can be adapted to the properties of the
input data if necessary. Such decisions are made by humans after inspecting the distribution of E-values and domain
lengths, and the distribution of overlap sizes between different domains in the InterPro domain assignment file. GFam
can readily generate these plots using Matplotlib, a plotting library for Python. Matplotlib is available as a package in
all major Linux distributions, and the project provides an installer for Microsoft Windows and Mac OS X.

The script can be invoked as follows (assuming that the configuration file is named gfam.cfg):

$ bin/plot.py -c gfam.cfg figurename

where figurename is the name of the figure to be plotted. You may also save figures to an output file:

$ bin/plot.py -c gfam.cfg -o *outfile*.pdf figurename1 figurename2 ...

The supported output formats include PDF, PNG, JPG and SVG, provided that the corresponding Matplotlib backends
are installed. ASCII art representations of the histograms may also be printed if the extension of the output file is
.txt.

To get a list of the supported figure names, specify list in place of the figure name:

$ bin/plot.py -c gfam.cfg list

The supported figures are as follows:

evalue_distribution Plots the count or relative frequency of domains with a given log E-value, sorted by
different data sources in the InterPro input file, using a bin for each integer log E-value.

length_distribution Plots the count or relative frequency of domains with a given length, sorted by different
data sources in the InterPro input file, using 25 bins up to a length of at most 750. The rightmost column contains
all domains with length greater than 750.

overlap_distribution Plots the count or relative frequency of overlap length between all pairs of domains
that overlap by at least one residue and have the same data source. The plots are sorted by data sources and use
a bin width of 5.
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4.1.1 Command line options

-a FILE, --assignment-file=FILE If you don’t have a GFam configuration file or you want to run
the script on a different InterPro assignment file (not the one specified in the
configuration file), you may specify the name of the InterPro file directly using
this switch. In this case, -c is not needed.

--cumulative Plot cumulative distributions (if that makes sense for the selected plot).

-o FILE, --output=FILE Specify the name of the file to save the plots to. The desired format of the
file is inferred from its extension. Supported formats: PNG, JPG, SVG and PDF
(assuming that the required Matplotlib backends are installed). You may also use
a .txt extension here, which turns on --text-mode automatically.

--relative Plot relative frequencies instead of absolute counts on the Y axis (if that makes
sense for the selected plot), and use a line chart instead of a bar chart.

--survival Plot survival distributions (if that makes sense for the selected plot), and use a
line chart instead of a bar chart.

-t, --text-mode Print an ASCII art representation of each histogram. This option is useful if you
are sitting at a non-graphical terminal (e.g., an ssh shell) or if you want to dump
the histograms to a text file that you can analyze later. This option is turned on
automatically if the extension of the output file is .txt.

4.2 Updating the mapping of IDs to human-readable names

GFam relies on an external tab-separated flat file to map domain IDs to human-readable descriptions when producing
the final output. Such a file should contain at least the InterPro, Pfam, SMART and Superfamily IDs. The GFam
distribution contains a script that can download the mappings automatically from known sources on the Internet. The
script can be invoked as follows:

$ bin/download_names.py >data/names.dat

This will download the InterPro, Pfam, SMART and Superfamily IDs from the Internet and prepare the appropriate
name mapping file in data/names.dat. If you wish to put it elsewhere, simply specify a different output file name.
If you omit the trailing >data/names.dat part, the mapping will be written into the standard output. You can also
compress the mapping file on-the-fly using gzip or bzip2 and use the compressed file directly in the configuration
file as GFam will uncompress it when needed. The following command constructs a compressed name mapping file:

$ bin/download_names.py | gzip -9 >data/names.dat.gz

Note that the script relies on the following locations to download data:

• <ftp://ftp.ebi.ac.uk/pub/databases/interpro/names.dat> for the InterPro name mapping

• <http://pfam.sanger.ac.uk/families?output=text> for the Pfam name mapping

• <http://smart.embl-heidelberg.de/smart/descriptions.pl> for the SMART name mapping

• <http://scop.mrc-lmb.cam.ac.uk/scop/parse/> for the SCOP description files (named
dir.des.scop.txt_X.XX, where X.XX stands for the SCOP version number). It also relies on the
most recent version of the SCOP description file being linked from the above page. The script will simply scan
the links of the above page to determine what is the most recent version of SCOP. If the version number cannot
be determined, the script will silently skip downloading the SCOP IDs.

16 Chapter 4. Supplementary scripts

http://matplotlib.sourceforge.net
ftp://ftp.ebi.ac.uk/pub/databases/interpro/names.dat
http://pfam.sanger.ac.uk/families?output=text
http://smart.embl-heidelberg.de/smart/descriptions.pl
http://scop.mrc-lmb.cam.ac.uk/scop/parse/


CHAPTER
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API DOCUMENTATION

5.1 gfam – The main module

5.2 gfam.assignment – Routines related to sequence-domain anno-
tations

5.3 gfam.blast – Handling BLAST file formats and utilities

5.4 gfam.compat – Compatibility classes for Python 2.5

5.5 gfam.config – Configuration file handling

5.6 gfam.enum – A simple enumeration class

5.7 gfam.fasta – FASTA parser and emitter

5.8 gfam.go – Handling the Gene Ontology

5.8.1 gfam.go.obo – Parsing OBO ontology files

5.8.2 gfam.go.overrepresentation – Overrepresentation analysis

5.9 gfam.interpro – Handling InterPro-related files

5.10 gfam.modula – Modular calculation framework

Modula is a modular calculation framework for Python that allows you to define tasks that depend on input files and
on each others. Modula will figure out which tasks have to be executed in which order in order to calculate the final
results – this is done by a simple depth first search on the task dependency graph.

Modula started out as a separate project, and you don’t have to know its internals in order to use the GFam API. The
only reason why it has been placed as a submodule of GFam is to avoid foricng users to install Modula separately. The
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Modula API is not documented here as it is not an internal part of GFam. Modula is used only by the GFam master
script (see gfam.scripts.master) to execute the calculation steps in the proper order.

5.11 gfam.sequence – Simple sequence and sequence record
classes

5.12 gfam.scripts – Command line scripts

Each step in the GFam pipeline is implemented in a separate submodule of gfam.scripts. These submodules
contain only a single class per submodule, derived from gfam.scripts.CommandLineApp. The submodules
are invoked automatically in the right order by a master script in gfam.scripts.master. In general, you only
have to invoke the master script and it will do the rest for you, but some of the steps might be useful on their own, so
they can be invoked independently from the command line as:

$ python -m gfam.scripts.modulename

where modulename is the name of the submodule to be executed. You can get usage information for each submodule
by typing:

$ python -m gfam.scripts.modulename --help

5.13 gfam.utils – Utility classes and functions
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INDICES AND TABLES

• genindex

• modindex

• search

19


